### Problem 2

How many time do we need to toss to estimate the fairness of a coin?

Checking whether a coin is fair

### Problem 1

The expectation times of sampling to get a number twice from a discrete uniform distribution $U(1,n)$.

$\begin{eqnarray} P(X = x | n) &=& \frac{x}{n} \frac{\prod_{i=0}^{x-1} (n-i)}{n^x}, \quad x = 1, 2, \dots, n \\ P(X = x | n) &=& \frac{x}{n} \frac{n-x+1}{x-1} P(x - 1 | n) \\ \end{eqnarray}$

$P(X = x)$ denotes the probability that $S = \{s_1, ..., s_x\}$ are distinct numbers, and $s_{x+1} \in S$.

### Solution

Expectation:

$\begin{eqnarray} E_n &=& 0 \\ E_{n-1} &=& \frac{1}{n}(1 + E_n) \\ E_{n-2} &=& \frac{2}{n}(1 + E_{n-1}) \\ E_{i} &=& \frac{n-i}{n}(1 + E_{i+1}) \\ E(X) = E_{0} &=& \frac{n}{n}(1 + E_{1}) \\ \end{eqnarray}$ $\begin{eqnarray} E(X) + 1 &=& \frac{\sum_{i=0}^{n} \frac{n!}{i!}n^i}{n^n} \\ &=& e^n n^{-n}\Gamma(n+1,n) \\ \end{eqnarray}$

where

$\begin{eqnarray} \Gamma(s,x) &=& \int_x^\infty t^{s-1}e^{-t} dt \\ &=& (s-1)!e^{-x}\sum_{k=0}^{s-1} \frac{x^k}{k!} \\ \end{eqnarray}$

Variance:

$\mathrm{Var}(X) = \mathrm{E}(X^2) - (\mathrm{E}X)^2$

I donâ€™t find a good way to calculate it yet.

$\begin{eqnarray} \mathrm{E}(10) = 3.660215680,& \quad &\mathrm{Var}(10) = 2.942605496\\ \mathrm{E}(100) = 12.20996063,& \quad &\mathrm{Var}(100) = 38.70690078\\ \mathrm{E}(200) = 17.39844386,& \quad &\mathrm{Var}(200) = 79.89570756\\ \mathrm{E}(10000) = 124.9991219,& \quad &\mathrm{Var}(10000) = 4250.220410\\ \end{eqnarray}$ $\begin{eqnarray} P(X \le 94 | N = 1000) &>& 0.99 \\ P(X \le 302 | N = 10000) &>& 0.99 \\ \end{eqnarray}$

### Problem 0

Sample $m$ numbers $\{x_1, \dots, x_m\}$ without replacement from $\{1, \dots, n+m\}$. Let $X = x_1 + \dots + x_m$. Find $\mathrm{E}(X)$ and $\mathrm{Var}(X)$.

### Solution

$\begin{eqnarray} \mathrm{E}(X) &=& \frac{m}{n} \sum_{i=1}^{n+m} i \\ &=& m(m+n+1)/2 \\ \mathrm{E}(X^2) &=& \frac{m}{n+m} \sum_{i=1}^{n+m} i^2 + \frac{m(m-1)}{(n+m)(n+m-1)} \sum_{i=1}^{n+m-1}\sum_{j=i+1}^{n+m} 2ij \\ \mathrm{Var}(X) &=& \mathrm{E}(X^2) - (\mathrm{E}(X))^2\\ &=& nm(n+m+1)/12 \\ \end{eqnarray}$