-
Notes on zkSNARKs in Nutshell
-
A numerical algorithm to compute the optimal binomial confidence interval
-
Algorithms for Big Data
-
Geometric Approximation Algorithms
-
The Design of Approximation Algorithms
-
社会心理学 8th 第一章
-
小团的车辆调度
-
投币 X 死斗
-
卡特兰数(买票找零问题)
-
丢失的登机牌(The Lost Boarding Pass)
-
Interesting interview algorithm problems
-
Implementation of Coroutine in Cpp
-
笛卡尔积 2: 从Generator到Iterator
-
笛卡尔积: 副标题太长见正文
-
Practical Foundations for Programming Languages 1
-
Airbnb经典论文: Embeddings for Search Ranking at Airbnb
-
From RankNet to LambdaRank to LambdaMART: An Overview (2010)
-
ListNet: A Listwise Approach of Learning to Rank (2007)
-
CycleGAN
-
Reinforcement Learning 17: Frontiers
-
Reinforcement Learning 16: Applications and Case Studies
-
Reinforcement Learning 15: Neuroscience
-
Reinforcement Learning 14: Psychology
-
Reinforcement Learning 13: Policy Gradient Methods
-
Reinforcement Learning: Models
-
Reinforcement Learning 12: Eligibility Traces
-
R-CNN
-
YOLO
-
Reinforcement Learning 11: Off-policy Methods with Approximation
-
Reinforcement Learning 10: On-policy Control with Approximation
-
Attention Models
-
AlphaGo(Zero) 学习笔记
-
Capsule Network
-
Wasserstein GAN
-
Reinforcement Learning 9: On-policy Prediction with Approximation
-
Reinforcement Learning 8: Planning and Learning with Tabular Methods
-
Reinforcement Learning 7: n-step Bootstrapping
-
Reinforcement Learning 6: Temporal-Difference Learning
-
Reinforcement Learning 5: Monte Carlo Methods
-
Reinforcement Learning 4: Dynamic Programming
-
FractalNet
-
Reinforcement Learning 3: Finite Markov Decision Processes
-
Reinforcement Learning 2: Multi-armed Bandits
-
Reinforcement Learning 1: Introduction
-
Deep Learning: Chapter 20
-
Deep Learning: Chapter 19
-
Deep Learning: Chapter 18
-
Deep Learning: Chapter 17
-
Deep Learning: Chapter 16
-
Deep Learning: Chapter 15
-
Deep Learning: Chapter 14
-
Deep Learning: Chapter 13
-
Deep Learning: Chapter 12
-
Deep Learning: Chapter 11
-
Deep Learning: Chapter 10
-
变分推断
-
LightRNN
-
Deep Learning: Chapter 9
-
Deep Learning: Chapter 8
-
Deep Learning: Chapter 7
-
机器学习 Tom 1~4
-
Deep Learning: Chapter 6
-
Deep Learning: Chapter 5
-
CS224n: NLP with Deep Learning
-
The Elements of Statistical Learning
-
Metropolis-Hastings Algorithm
-
Box-Muller Algorithm
-
Statistical Inference 9~12
-
Y Combinator 精简版
-
Y Combinator
-
圣彼得堡悖论 II
-
Fourier Transform
-
代数学引论 第一卷
-
Copernican Principle
-
Statistical Inference 5~8
-
信息论基础 9~17
-
复分析基础及工程应用 习题
-
复分析基础及工程应用
-
Statistical Inference 1~4
-
信息论基础 1~8
-
圣彼得堡悖论
-
数学分析原理
-
Metropolis-Hastings Algorithm
-
A numerical algorithm to compute the optimal binomial confidence interval
-
Streaming Systems
-
Conda Cheatsheet
-
NLP with Python
-
Hands-On Machine Learning with Scikit-Learn & TensorFlow
-
Notes on Designing Data-Intensive Applications
-
Grokking the System Design Interview
-
Learning Asymptote
-
Problem Set
-
好想读!
Algo
Happy
Interview
Lang
Learning
Math
Statistics
Tech
Zzz
subscribe via RSS